International journal of scientific and technical research in engineering (IJSTRE)
www.ijstre.com Volume 1 Issue 1 || April 2016.

Motivation to a Deadlock Detection in Mobile Agents with
Pseudo-Code

Rashmi Priya

Abstract : The solution presented locates locality of reference during the deadlock detectionprocess by
migrating detector agents to query multiple blocked agents.To message each blocked agent individually and
gather theirresponses at the shadow agent itself is an alternative to this single migration.Thepseudo code
provides a context for the solution and insightinto the responsibilities and activities performed by each entity.

Keywords:Deadlock, Agents, pseudo code, detector, entity

I. Introduction

As presented in the previous section traditional distributed solutions commonly have fault and location
assumptions that make them unsuitable for mobile agent systems. To solve this problem, mobile agent specific
solutions are required. The properties of the presented deadlock detection algorithm illustrate how it is a fully
adapted mobile agent solution.
The presented technique is fault tolerant and robust. Lost agents or messages during the deadlock detection
process do not represent a critical failure. This fault tolerance is due to three properties of the algorithm: the
autonomous nature of the agents, the periodic nature of the detection process and the copying of deadlock
information. Shadow, deadlock detection and consumer agents execute asynchronously . They do not depend on
continual communication during the deadlock detection process. The algorithm is designed around incremental
construction of the global wait-for graph. Finally therefore if a portion of the graph is lost, the next update will
recover that information. Hence copying of the partial wait-for graph into deadlock detection agents make the
loss orfailure of a particular deadlock detection agent trivial and has no impact on the detectionprocess, outside
of slowing the process. Additional safeguards can be built into the agent hosts. such as agent crash detection, to
improve fault tolerance

I1. Algorithm Motivation and Agent Properties

Bylimiting the number of messages that would be required in other solutionsthe Detector migration
reduces network load. It is difficultto compare the network load of this mobile agent solution to that generated in
traditionaldistnbuted deadlock detection solutions due to the significantly different paradigm andproperties of
the environment.This is due to the parallel /distributed nature of thetechnique, which enforces the lack of a
central point of messaging and coordination.This reduces the risk of flash congestion and allows the technique
to handle deadlockinvolving many blocked agents.

The load is spreadacross many host environments, if the network load of the presented solution is considered as
a whole.

Additionally, networkorganization independence is guaranteed through a clear separation of mobile agents from
the mechanics of routing and migration, the agents are not aware of the number of hosts in the mobile agent
system and do not have explicit knowledge of resource locations. It should be noted that even though the
solution is network independent, the topology is static once the algorithm begins. If the topology is allowed to
change, a dynarnic topology update protocol must execute in the background to provide new routes to the hosts.

A common use of mobile agents is to encapsulate complex protocols and interactions [24]. This technique uses
the combination of shadow agents and deadlock detection agents to encapsulate a complex series of probes,
interactions and acknowledgments.

Additionally. these protocols are isolated from the consumer agent; therefore, can be easily modified and
upgraded. The deadlock detection phase could be implemented as remote procedure calls or another fom of
distributed programming, but would require network organization assumptions and the continual exchange of
messages. Detector and shadow agents cary out their deadlock detection tasks in an asynchronous manner. They
coordinate their efforts in defined ways, but are able to keep working without regular contact and do not require
constant supervision while carrying out tasks. This asynchronous and autonomous operation contributes to the
previously discussed fault tolerance.. For examplethe combination of consumer, shadow and detector agents

Manuscript id. 626565782 www.ijstre.com Page 1

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

adapt to their environment tosolve deadlock situations, shadow agents react independently to changingnetwork
conditions and the state of their target consumer agent to initiate the deadlock

detection processing. Similarly the separation of the implernentation from facilities specific to a particular
mobile agentsystem or operating system detector agents can react to network failures or therequests of other
agents while gathering global wait-for graph information.

allows the solution to execute in a heterogeneousenvironment. Moreover the separation of replica and detector
agents from the consuming agents they monitor, allows them to be adapted to many different environments
without (or with minor) modifications to the entities performing the work.

1. Deadlock Detection Pseudocode

This pseudo code provides a context for the solution and insightinto the responsibilities and activities
performed by each entity. This section presents pseudo-code of each element that plays a significant role in
thepresented solution.

First, pseudo-code forthe consumer, shadow and detection agent is presented. Finally, code for the mobileagent
environment is presented.

3.1 Agent A

public class AgentA extends MobileAgent
{

public AgentA(String int heartbeat)

{
state = IDLE;

public void run()

while(true)

{

messages = getMessagesFromBlackboard(agentld);
processMessages(messages);

switch (state)

{

case IDLE:

case WAITING:

/l do nothing

break;

case MOVING:

if(currentHost is not targetEnvironment)

postRouteRequest(targetEnvironment) ;

{

else

{
/ Made it!

state = IDLE;

{
break;

{
sleep (heartbeatDelay) ;
\

{

private Vector processMessages(messages)

while (more Messages)
if message was accepted remove from list;
return unprocessed messages;

{

Manuscript id. 626565782 www.ijstre.com Page 2

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

private boolean processMessaget BlackboardEntry msg)
if (message equals amove” AND state is IDLE)

{

targetEnvironment = get terget from message;

state = MOVING;

/I lets ask our current environment to route us
postBlackboardMsg("route”,

targetEnvironment) ;

else if(message eqyals "lockw AND

state is IDLE OR WAITING)

{

extract lock type and resource from message ;
lockResource(lockType, resource);

if(message equals

ext ract resource f rom message;
unlockResource(resource);

{/I locked. the AgentEnvironment should have created
/I a shadow agent and placed us under it's watchful

1/ eye.

/I Special case. if the resource we just locked was

/I the same as a resource we were blocked on, it

/I means the Environment notified us and we should
/I move into the idle state

AND state
private void lockResource(String locktype,
String resourceName)

{

if(lockType equals “exclusive”)

get resource manager;

if resourceManager.lockResource(resourceName,
lockType) succeeds

{

if(resourceName equals blockedResourceName)
state = IDLE;

{

{

else

/ I locked failed .. time to block

state = WAITING;

blockedResourceName = resourceName;

/I Notify our gracious host ...
postBlackboardMessage(“agentBlock”, resourceName);
private void unlockResource(String resourceName)

{

get Resource Manager
resourceManager.unlockResource(resourceName);

3

3.2 Agent B
public class ReplicaAgent extends MobileAgent

(
public ReplicaAgent (String id, String targetAgent, int heartbeat)

Manuscript id. 626565782 www.ijstre.com Page 3

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

{
state = IDLE;

targetAgentName = targetAgent;
reset locked resource list

reset detection info table

reset detector agent

{

public void run()

while(true)

/I Check to see if Our detector is dead
checkForDetectorDeath () ;
if (state is not MOVING)

{

messages = getMessagesFrom BlackBoard();

messages =processMessages(messages);

{

switch (state

{

case IDLE:

break;
get~messagesFromBlackboard();
processMessages(messages);

case MOVING:

if(currentHost is not targetEnviroment))
{

routeRequest(targetEnvironment);
{

else

{

state = IDLE;

}

break;

sleep (‘heartbeatDelay ;

}

}

private Vector processMessages(messages)
while(more Messages)

processMessage(currentMessage);
if message processed remove from list;

{

return unprocessed messages;

private boolean processMessage(BlackboardEntry msg)

{

Vector attachments = msg.getAttachments();
if(message equals "move" AND state is IDLE)

String target = extract target from message;
targetEnvironment = target;
state = MOVNG;

else if(message equals “addLock™)

{
Manuscript id. 626565782 www.ijstre.com Page 4

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

addlock(attachment #l,

attachent #2,

attachment #3,

attachent #4);

retVal = true;

else if(message equals “removeLock™)

{

removelock (attachment #1, attachment #2) ;
state = IDLE;

retVal = true;

else if(message equals ablockedm))

{
blockedTarget(attachment #l 1;
retVal = true;

else if(messge equals wunblockedw))

{
unblockedTarget () ;
retVal = true;

else if(message equals “deadlockReport”))

{
processReturnOfDetector(attachment#1, attachment #2, attachment #3) ;
retVal = true;

else if(message equals “deadlockInfoRequest”) 1
retVal = true;

else

{

/I We dontt understand this message, but our superclass
/I might have some good ideas ...

retVal = super.processMessage(msg);

{

public void exit ()

{
if(detector)

{

Remove (detector from host environment);

{

super. exit () ;

private void addlock(String environment,String resource,String owner,int priorityl)
(// Check to see if we contain this lock already)

if(resource not already locked)

{

new resourcelnfo(env,res, owner,priorityl);

storeresourcelnfo in locked resource list

by
¥

Private void removeLock(Stringenvl, Strin gresourceNamel)

i f(resourceNamel isi n locked resource list)

{

remove resource from locked resource list

{
{

privatevoid unblockedTargetl ()

Manuscript id. 626565782 www.ijstre.com Page 5

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

/I unblocked target
state=IDLE;

{
private void blockedTarget(Agent blockedAgent,
String (resourceName)

{

Statel= TARGETBLOCKED;

owner = query host environment for owner of resource;
blockedResourceName = resourceName;

localAgents = query host environment about | o ¢ a | agents;
i f (owner inlocalAgents)

Table .put (targetAgentName, new DetectionInfo(..));
/I 1) Create agent

Detectorl = new DetectorAgentO;

/1 2) Put the agent

postBlackboardMsg(detector);

/I 3) agent start

postBlacKboardMsg(buildDetectorLocks ()) ;
numOfDetectionStarts++;

lastDetectionStartTirne = current time ;

{
{

privatevoid processReturnOfDetector(DetectorAgent agent)
(//Ourdetectorisback, let's see what's new)
switch(state)

{

case TARGET-BLOCKED :

i f(checkForDeadock(agent.getDetectionTables0))
(

/I We have a deadlock, b e tterresolve it.
resolveDeadlock(agent) ;

reset detectionInfoTable;

{

case IDLE:

/I Ourtargetunblockedifthisisthecase ..
/lletskillthedetector..

removeDetector () ;

(

/] The state w i | | have changed t o waiting f o r unlock
/l'i fth e deadlock check succeeded

switch (state)

(

case TARGET-BLOCKED:

/I resetand restartthedetector
postBlackboardMsg(" start", buildDetectorLocks()); numOfDetectionStarts++;)
lastDetectionStartTime =currenttime;

break;

case WAITING,FOR~UNLOCK:

/' W e are breaking the deadlock don*tstart
/lanynewprocessing.

break;

{

{

privateboolean checkForDeadlock(Vector detectionTableList)

//-1fwefindtheresourceth atour master is blocked
/loninthereturnedlock list ... we have a

Manuscript id. 626565782 www.ijstre.com Page 6

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

// deadlock

//-1fwedontfindtheresource, justadd the locks
/ltoourgloballist
/ILet'sgothroughthereturnedtable..entrybyentry
/landaddittoourdetectiontable.

while (detectionTableListhasmoreentries)

{

detectionTable=currentdetectiontable;
agentList=getagentlistfromdetectionTable;
while(agentListhasmoreentries)

{
detectioninfo=detectioninfofromcurrenttable
relatedtocurrentagent;
adddetectioninfotoglobaltable;

if(currentagentnarneequalstargetAgentName)

deadlockEound = True;
{
{
{

r e turn deadlockFound;

{

private void resolveDeadlock(DetectorAgent agent)

// Build a list of t h e resources involved inth e cycle ...
if(stateis TARGETBLOCKED)

{

/I So we found a deadlock .. t h e question is are

/' we t h e one to break it ?

/I Findth e Cycle ...

cycleList = findElementsinCycle(detectioninfoTable) ;
while(cycleList has more elements)

{

//findresourcewithlowestpriority
lockToBreak = lowest priority resource;

i f(lockToBreak equals resource we are blocked on)
{

/I Let'ssendourdetectoroffonhismission
/It ounlock t h e resource ..
/IButfirstwebetter sethim up with the

/I correct information t o surviveth e
/Idestination ResourceManager*~ interogation.
/I3)startthedetectoragent
postBlackboardMsg("unlock",

LockToBreak) ;
state=WAITING-FOR-UNLOCK;

{

{

private Vector findcycle (Hashtable detectionInfoTable)
{

Vector cycleVector =newVector();

cyclevector add(resource we are blocked on) ;

info = find entry i n detectionInfoTable whose primary
lockisthecurren tresource;
/ILoopuntilwefindtheentryforouragent
while(currententry'sagentnameisnrtequalto
ourtargetagent)

{
Manuscript id. 626565782 www.ijstre.com Page 7

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

/I Walk up the tree t 0 t h e parent node.
info="findentryin detectioninfoTable whose primary

lock isthe currentresource;

cyclevector add(info);
{

return cyclevector;

{

private void checkForDetectorDeath()

{

Date currentTime = current time;
BlackboardEntry msg;

if(numOfDetectionStarts >O AND (state is TARGETBLOCKED OR state is WAITING-FOR,UNLOCK) {
{

/' We have a dead detector

/I 1) Create a detector agent

detector = new DetectorAgent 0;

/1 2) Inject the agent

postBlackboardMsg ("inject”, detector) ;

if(state is TARGET-BLOCKED)

{
/I 3) start the agent
postBlackboardMsg(“start", buildDetectorLocks());

{
else if(state is WAITING-FOR-UNLOCK)

resolveDeadlock(detector.getldentifier());
detector.getToken());

{

lastDetectionStartTime = current time;

}
}
}
}
3.3 AgentC

public class AgentC extends MobileAgent

{

public AgentC(String id, int heartbeat,
ShadowAgent parent)

{

reset detection Table List;

reset resources To Vist;

reset targetEnvironment;

reset targetResource;

state = IDLE;

set parent = parent;
public void run ()

while (true)

{
if (state is not MOVING)

{

messages = getMessagesfromBlackboard () ;
messages = processMessages(messages);

Manuscript id. 626565782 www.ijstre.com Page 8

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

¥

switch (state)
getMessagesfromBlackboard () ;
processMessages(messages);

(

case IDLE:

break;

case MOVING:

if(currentHost is not targetEnvironment))

{

else

{

state = CHECKING-LOCKS;

{

break;

if(current Host is not targetEnvironment)

if(host.unlockResource(targetResource, agentToNotify)

{

(state = RETURN-FROM-UNLOCK);
{

else

state = IDLE;

{

case RETURNRNFROM, the LOCK:

if(currentHost is not startingEnvironment)

(

Shadow,removelock(targetEnvironment, targetResource);
state = IDLE;

{
case DONE:
if(currenthost is not startingEnvironment)

(
state = REPORT-RESULTS;

)

case CHECKING-LOCKS:

checklocks () ;

break;

case REPORT-RESULTS:

postMessageToBlackboard(shadowAgent, deadlockInfo):
break;

}
sleep(heartbeatDelay) ;
private Vector processMessages(messages)

while (more Messages)

{

processMessage(currentMessage);
if message processed remove from list;

{

return unprocessed messages;

{

private boolean processMessage(BlackboardEntry rnsg)

{

attachments = msg,getAttachments();
if(message equals “startW)

startDetection ((Vector) attachment ;

Manuscript id. 626565782 www.ijstre.com Page 9

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

retVal = true;

else if(message equals "unlock™) {

(

startunlock (attachment #1,

attachment #2,

attachent #3) ;

retVal = true;

message ;

deadlockRequestResponse (attachment #l) ;
retVal = true;

{

else

{

super.processMessage(msg 1;

{

return retVal,

{

private void startDetection(resources)

(' setVisitlist(resources));
targetEnvironment(entry.getEnvlame() };
targetResource (entry. getResName ()) ;
/I Reset the table ...

detectionTablelist(new VectorO 1;

start ingEnvironment (getHost () . getName ()) ;
state (MOVING) ;

{

private void checklocks ()

while(shadowlist has more elements)
count expected responses;

{

if(expected responses >0)

(
state = WAITING-FOR-RESPONSE;

{

else

{
findNewTarget () ;

private void deadlockRequestResponse(newTable)
{

shadowL.ist = query current host for agents blocked on
the resource we are visiting;

expectedResponses--;

detectionTablelist.add(newTable);

if(all expectertesponses received)

{

findNewTarget O ;

}

}

private void findNewTarget0

{

if(more resource to visit)

get next resource;

/I Let's get started ...

targetEnvironment = entry.getEnvName();
targetResource = entry.getResName();

{

else

Manuscript id. 626565782 www.ijstre.com Page 10

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

{

/l Tirne to head home ..
targetEnvironment = startingEnvironment;
state = DONE;

by
¥
¥

Host Environment

public class AgentEnvironment extends Thread

public AgentEnvironment(String name, int id, int 1oggingLevel)
{

resourceManager = new ResourceManagerO;

topologyManager = new TopologyManager();

reset agentTable;

reset messageBoard;

reset blockedAgentTable;

globalldentifier = id;

state = PROCESSING;

/I Global Identifier can be used as the priority
public void run ()
while(true)

checkEorMessages () ;

updateRoutes () ;

sleep('1000);

}

)

public synchronized void agentEnter(Agent newAgent)

{
if(state is PROCESSING)

{

agentTable.put(newAgent) ;

newAgent.enter0;

}

}

private synchronized void agentExit(Agent leavingAgent

{
if (state is PROCESSING)

(

leavingAgent. exit () ;

)
¥

private void agentBlock(Agent blockedAgent, String resourceName)

/I Look for a replica agent ...
replica= find replica agent for blockedAgent;
if (shadow found)

{

postBlackboardMsg("blockedAgent”, resourceName) ;
private void checkForMessages()

Manuscript id. 626565782 www.ijstre.com Page 11

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

{

get messages from blackboard;
while (more messages)

{

processMessage(current message);

by
¥

private void processMessage(BlackboardEntry msg
attachments = rnsg.getAttachments0;

if(message equals “pause”))
state(PAUSED) ;

else if(message equals wresumen))

(
state(PROCESSING) ;
message equals

agentBlock (msg . getAgent Id () , attachment t1 ,attachment t2);
if(message equals 0)

{
routeRequest(msg.getAgentld(), attachment # | ,attachment #2);

else if ((message equals *inject)
this.injectAgent(attachment)

else if(message equals "remove"))

{

removeAgent (attachrnent #1) ;

by
¥

private boolean routeRequest(String movingAgent, EnvironmentToken token,
String targetEnv)

{
if(state() is PROCESSING)

movingAgent = get moving agent from agent tables;

(

return true;

if(check for shadow information in the token)
shadowAgentld = get shadow name from token;
If (check for shadow agent in agent tables)

shadow = get shadow agent from agent tables;

}

else

retVal = f alse;

¥

if (retVal istrue)

AgentEnvironment env = request route from
topologyManager;
if (envisnot nuil)

suspendAgent(movingAgent);
agentExit(movingAgent 1;
agentlable () . remove (movingAgent Id) ;

Manuscript id. 626565782 www.ijstre.com Page 12

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

env.agentEnter(movingAgent);
if (shadow is not null)

{

suspendAgent (shadow) ;
agentExit(shadow);

agentlable () . remove (shadow) ;
env.agentEnter (shadow) ;

{

Else

retVal = false;
}
}
}

else

retVal = false;

3etu rnretVal;

éublic Vector getBlockedAgents(String resourceName)
:eturn list of agents blocked on resourceName;

public synchronized void postMessage(String agentld,
String message)

add message for agentld to the message lists;

public synchronized Enurneration getMessages(String agentld)
{

return messages for agentld,;

{

private injectAgent(Agent newAgent)

{

newAgent . start () ;

agentTable.put(newAgent);

private void removeAgent(String agentName 1

}

agentTable.remove(agentName) ;
}

private void updateRoutes()

44

IV. Conclusion

The presented algorithm is designedwith the unique properties and challenges of mobile agent systems as a
motivating factor. As a result, the solution has some of the properties and features that are comrnonly found in
mobile agent implementations. This section lists the properties of the proposed algorithm which make it a
mobile agent solution. The solution is network organization independent. The algorithm makes no assumptions
concerning network topology (i.e., ring). the numberof hosts or node locations to support the solution. Resource-
based routing and tracking of the nodes visited by a particular agent elirninate the need for explicit topology
knowledge

References:

Manuscript id. 626565782 www.ijstre.com Page 13

Motivation to a Deadlock Detection in Mobile Agents with Pseudo-Code

[1]
[2]
[3]
[4]
[5]
(6]
[71
(8]
[9]
[10]
[11]
[12]
[13]

[14]
[15]

Walsh, T., Paciorek, N. and Wong, D. "Security and Reliability inConcordia.", Appeared in Mobility: Processes,
Computer and Agents, Addison-Wesley, Reading, 1999.
Mitsubishi Electric Information Technology Center. "Concordia - Java Mobile Agent Technology."

World Wide Web, January 2000, http://www.meitcacom/HSUProjects/Concordia/

University ofStuttgart. “TheHomeof the Mole."WorldWideWeb,September 2000, httJ)://mole.infonnatik.uni-stuttgart.de/
University of Tromse and Cornell University. "TACOMA - Operating System Support For Mobile Agents.”
World Wide Web. August 1999. http://www.tacoma.cs.uit.no/

ObjectSpace Inc. "ObjectSpace Voyager Core Package Technical Overview.", Appeared in Mobility: Processes,
Computer and Agents, Addison-Wesley, Reading, 1999.

ObjectSpace Inc. "ObjectSpace Product Information: Voyager." WorldWideWeb. September
2000.htm://www.objectspace.com/products/voyager/

Fachbereich Infonnatik and Johann-Wolfgang-Goethe-Universitaet Frankfurt. "ffMain". World Wide Web.
February 2000. htn>://www.tm. informatik.unie frankfurt.de/Projekte/MN

University ofGeneva. "TheMessenger Proejct." WorldWideWeb.December 1997. http://cui.unige.ch/tios/msgr/

General Magic, Inc. "Odyssey". World Wide Web. November 2000. http://www.genmagic.com/

University ofModena. "MARS(Mobile Agent Reactive Space)." WorldWideWeb. October
2000.http://sirio.dsi.unimo.itMOON/MARS/ index.html

CardelliyL.ltMobileComputational ~ Ambients.” WorldWide Web. September 2000. http://www.luca.demon.co.uk/
Ambit/Ambit.html

TU Berlin andUniversity ofBologna. "ThePageSpace Effort." WorldWideWeb. January1997.http://flp.cs.tu-berlin.de/pagespc/
Flanagan, D.JavainaNutshell.O'Reilly &Associates, Inc.,Cambridge, 1996.

Horstmann, C.and Cornell, G. Core Java Volume | - Fundamentals. Sun MicrosystemsPress,California. 1999.

Sun Microsystems Inc. "Java 2Platform vI.2.2 API Specification." WorldWide Web.September
1999.htnz:l/java.sun.comlproducts/jdk/1.2/docs/ api/index.htrnl

Manuscript id. 626565782 www.ijstre.com Page 14

http://www.meitcacom/HSUProjects/Concordia/
http://www.tacoma.cs.uit.no/
http://www.tm/
http://cui.unige.ch/tios/msgr/
http://www.genmagic.com/
http://sirio.dsi.unimo.it/MOON/MARS/
http://www.luca.demon.co.uk/
http://www.luca.demon.co.uk/
http://flp.cs.tu-berlin.de/pagespc/

